If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30x+35=0
a = 1; b = 30; c = +35;
Δ = b2-4ac
Δ = 302-4·1·35
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{190}}{2*1}=\frac{-30-2\sqrt{190}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{190}}{2*1}=\frac{-30+2\sqrt{190}}{2} $
| 2-6r=r-5 | | -5+5(4+2x)=95 | | 18x+27=8 | | 5x+12=2x-30 | | 2(8-5n)=17.5 | | 9m+3=39 | | 5x-3(x-2)-x=0 | | 4(-1+5x)+3x=1/5(-25x+10)+22 | | -3(6x+5)=-41 | | G(x)=30x(x)-8 | | 260=60-2.5x | | 2u+8=8 | | 139=-10n+9 | | -11x-7=26 | | 6(8p+4)=-264 | | -3(6x+5=-51 | | 45l+100=347.5 | | (t+12)=(3t) | | n9=11 | | 2(a+2)-5=13 | | 3x+12=7x-9 | | 3x-73+x=x-8 | | 45l+100=347.50 | | 8v-4v+8=88 | | 4(9x+6)=36x–7 | | 252=28k | | 32/3=x+11/3 | | 0.5(x+1)–1=0.2 | | –7+3g=–4g | | X-15=6x-65 | | 4(−7x+5)+8=3(−9x−1)−2 | | 9b+0=9 |